
LECTURE - 2 (TISSUES)

- Outermost layer found in cell envelope of bacteria: Glycocalyx
- Bacterial cell wall: Peptidoglycan
- Plasmid DNA function: to confer certain unique phenotypic characters to bacteria
- Role of ribosomes of a polysome is to translate mRNA into proteins
- Peroxisomes: oxidative crystals
- Cell that is amoeboid in shape: White blood cell (has irregular shape)
- Transcription: the process of the flow of genetic information from DNA to RNA
- Nucleus was discovered by Robert Brown

- Major microtubule-organizing centre (MTOC) in eukaryotic cells involved in various cellular process, including sensory reception, locomotion, and embryogenesis: Centrosome
- Cell theory that proved the quasi-fluid nature of lipids to enable lateral movement of proteins within the bilayer: Fluid Mosaic Model
- Protein that protects epithelial cells from damage: Keratin

Tissues

• group of cells that have similar structure combined together to perform a specific function forms a tissue

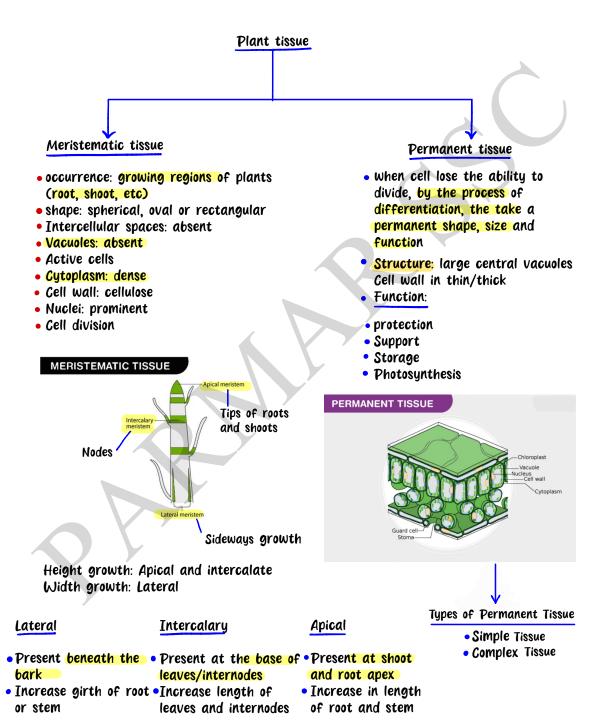
Tissues

plant tissues

animal tissues

Importance

- Causes division of labour in multicellular organisms
- Decreases workload on individual cells
- Leads to organisation


Basic Unit of Life ----> Cell

Group of cells -----> Tissue

Group of tissues -----> Organs

Group of organs ----- Organ System

Simple Tissue

→Types _____mechanical tissue

a) Collenchyma Tissue

Occurrence: in leaf stalks and stem of dicots

Cell Structure

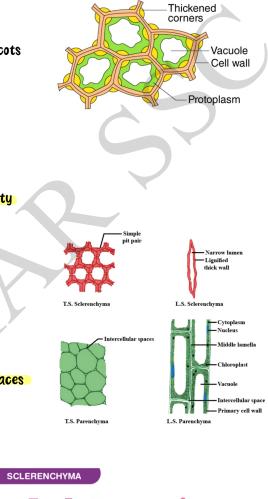
- Living
- Elongated
- Irregularly thickened at corners
- Very little intercellular space

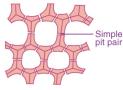
Functions

- Provides mechanical strength and flexibility
- Allows bending of parts ex: tendrils and stems of climbers
 - b) Parenchyma Tissue

—Aerenchyma —Chlorenchyma

- Food storage tissue
- In some cases contains chlorophyll, called Chlorenchyma
- When loosely packed, intercellular airy spaces are present called <u>Aerenchyma</u>


Provides buoyancy to parts, helps them float


c) Sclerenchyma Tissue -> Dead cells

• Provides toughness to the tissue

Occurrence: Outer parts eg: bark, husk of coconut, veins of leaves

• Walls are thick -> Lignin

Transverse section

Protective Tissue (part of simple tissues)

Types:

–Epidermis –Cork

- a) Epidermis -> Cuticle
- Occurrence: Outermost layer of plant parts eg: leaves, flowers, stem and roots

Functions:

- Protects all parts of plants
- Prevents water loss
- •Plants of dry habitats have thicker epidermis Epidermal cells on the aerial parts of plantsecrete waxy secretions which prevents from:
 - -Water loss
 - Injury

b) Cork

- Fungi infection
- Plants growing in desert have cuticle
- Layer of cutin is called cuticle
- Cutin is waxy materials and water resistant
- Cuticle aids in protection against water loss, injury and invasion of fungi
- Epidermal cells of the roots form hair like structures
- Long hair like parts increase absorption surface area of roots
- In leaves, epidermal cells form stomata
- Stomata are guarded by guard cells which are kidney shaped and regulate gaseous exchange
 - External protective tissue
 - 🔊 🛛 Dead
 - Compactly arranged cells
 - Intercellular spaces absent
 - Walls have suberin

- Guttation: the process of planting axis liquid from its leaves or blades
- Hydathode: a plant organ responsible for gat vascular plants
- The process happens at night

cactus plant

Occurrence: in mature roots and shoots

STOMATA OPENING AND CLOSUNG Under the state of the state

Functions:

- Protection to mature roots and shoots
- Suberin regulate gaseous exchange and water passage

Complex Permanent Tissue

• Made up of more than one type of cells

Function

• Transport water, minerals and food materials

Types

- Xylem
- vascular tissues

Phloem

Xylem fibres

Tracheids

Xylem

- Conducting tissue (one-way conduction)
- Conducts water and minerals from roots to shoots

Sieve pore

Companion

parenchyma

Sieve tube

element

cell Phloem

Phloem

Conducts food (two-way conduction)

Xylem Types:

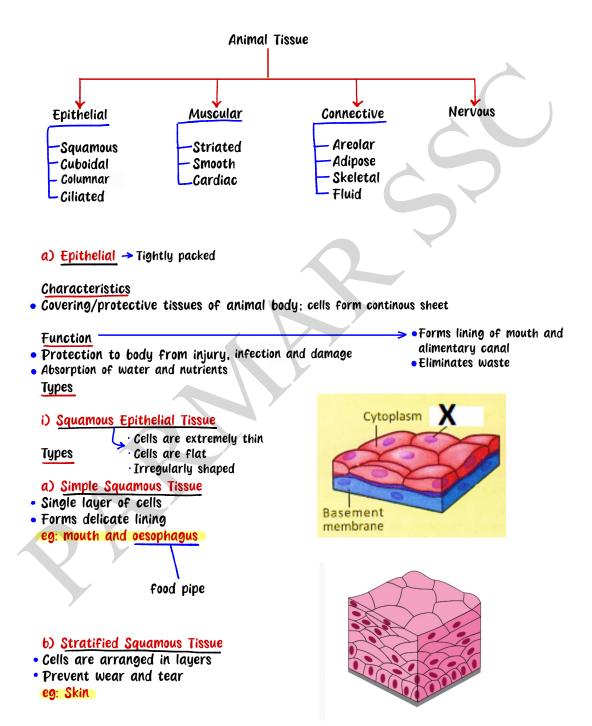
Xylem

Xylem parenchyma

Vessels

- Xylem parenchyma: food storage Tracheids
- Vessels
- Xylem fibres/sclerenchyma

dead


Phloem Types:

- Sieve tubes
- Companion cells
- Phloem parenchyma: food storage
- Phloem fibers: rigidity and support >or Phloem Scierenchuma

Living

Phloem Tissue

ii) Cuboidal Epithelial Tissue

Structure

- Cube like
- Tall = wide Occurrence

• Sweat glands

- Salivary glands
- Thyroid glands
- Lining of Kidney tubules

iii) Columnar Epithelial Tissue

Structure

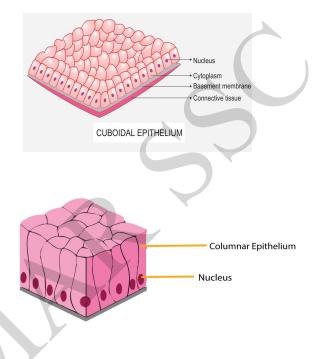
- Pillar like cells
- Tall > Wide

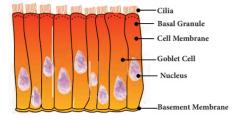
Occurrence

- · Lining of intestine
- Lining of stomach, gallbladder

iv) Ciliated Epithelial Tissue

Structure

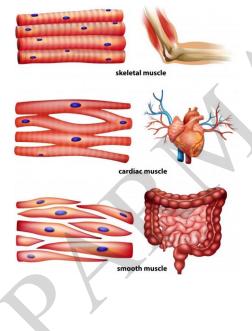

- Cuboidal/Columnar cells
- Cells have hair like projections on free surface called "cilia", which facilitates movement


Occurrence

- Respiratory tract
- Urinary tubules or kidney

Function

 Movement of mucus, urine, egg etc through rhythmic beating of cilia


b) Muscular Tissue/ Muscle Tissue

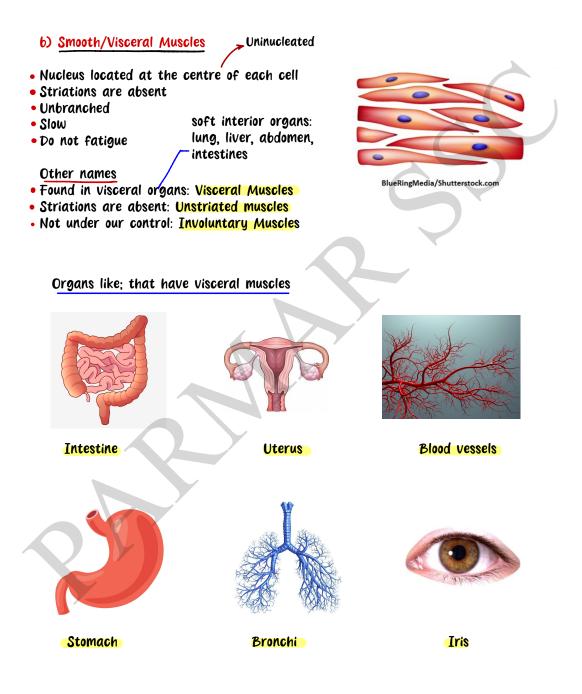
Function • Movement of body • Contractile protein • Contraction

Types

- Cardiac muscle
- Skeletal muscle
- Smooth muscle

a) Skeletal Muscle

- Muscle fibres are elongated and cylindrical
- Fast in nature Unbranched
- Each cell is multinucleated (many nuclei)
- Striations are present (alternate dark and light bands
- Easily fatigue


Occurrence

Biceps, bone

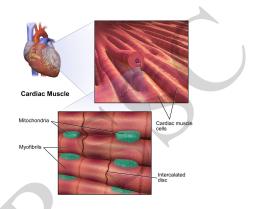
Other names

- Attached to skeletal: Skeleton Muscles
- Striations are present: Striated Muscles
- Are under our control: Voluntary muscles

c) Cardiac Muscles

- Fibres are cylindrical in shape
- Each fibre is uninucleated
- Fibres are branched
- Striations are present
- Do not fatigue

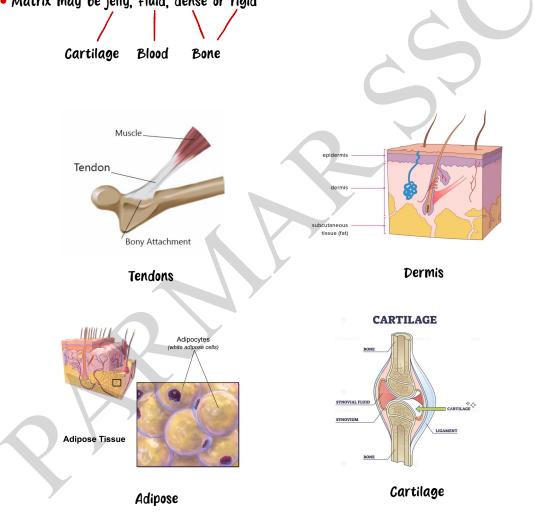
Other names


- Cardiac muscle: only present in heart
- Striated: Striations are present
- Not under our control: Involuntary muscles

Function

- Perform contraction and relaxation in wall of heart
- Help to pump and distribute blood to body

	Main features	Location	Type of cells	Histology
Skeletal muscle	 Fibers : striated, tubular and multi nucleated Voluntary Usually attached to skeleton 			
Smooth muscle	 Fibers : non-striated, spindle- shaped, and uninucleated. Involuntary Usually covering wall of internal organs. 	No.		
Cardiac muscle	 Fibers : striated, branched and uninucleated. Involuntary Only covering walls of the heart. 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Figure 1. Key features of skeletal, smooth and cardiac muscle.

- Connects various body parts
- Cells are embedded in an intracellular matrix
- Matrix may be jelly, fluid, dense or rigid

Structure

•Cells + loose gel like matrix

Occurrence

- Between skin and muscles
- Around blood vessels and nerves
- In bone marrow
- In space inside organs

Functions

- Connects skin + muscles
- Fills the space inside the organs
- Supports internal organs
- Helps in repair of tissues
- Muscles Tendons Ligaments Joint Bones

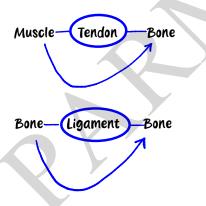
ii) Dense Connective Tissue

b) Adipose Connective Tissue

Types of Connective tissue

i) Loose Connective Tissue

Ligaments


Tendons

ii) Dense Connective Tissue

a) Areolar Connective Tissue

a) Tendons

- Fibrous tissue
- Great strength
- Limited flexibility
- Connects muscles to bones

Tendons and Ligaments

b) Ligaments


- Considerable strength
- Little matrix is present
- Connects bones to bones

b) Adipose Connective Tissue

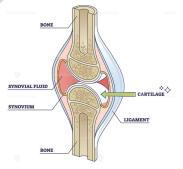
Structure

- Aggregation of fat cells
- Cells are rounded/oval and contain large fat droplets

- i) Cartilage
- Widely spaced out cells
- Matrix is gel-like
- Matrix is slightly elastic
- Cartilage is flexible

Occurrence

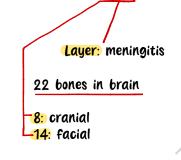
- Ear pinna, nose tip, trachea, larynx
- Smoothens bone surfaces at joints

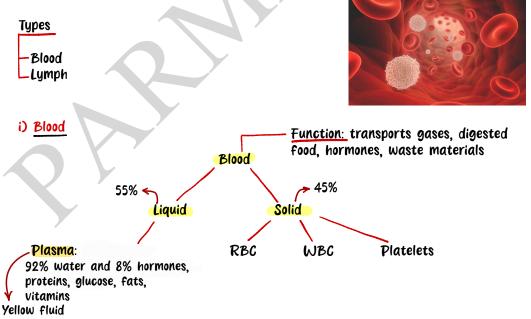

Function

Support and flexibility to body parts

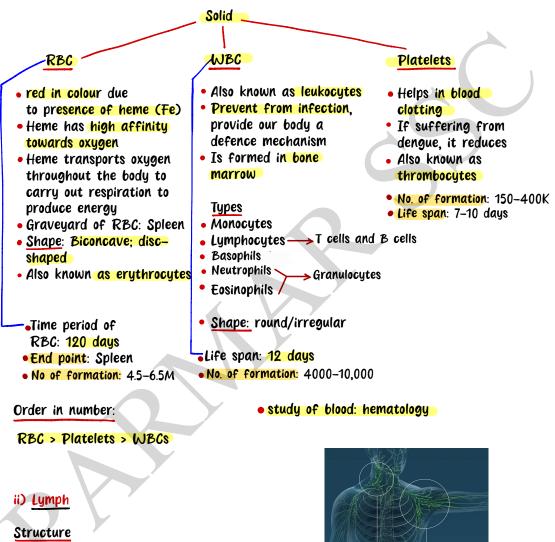
ii) Bones

- Very strong
- Non flexible
- Hard and rigid
- Matrix is hard and composed of calcium and phosphorous compounds


CARTILAGE

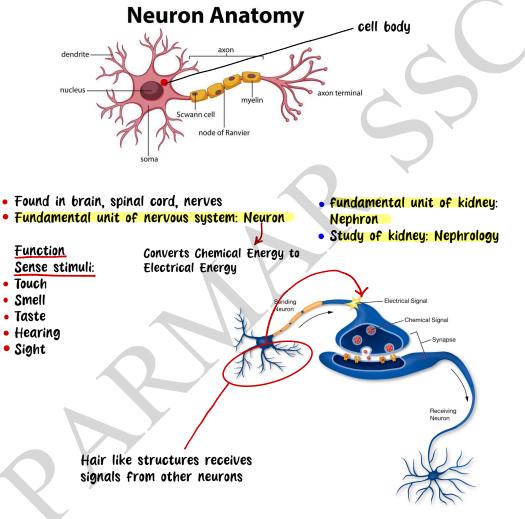

Functions

- Forms a framework
- Supports the body
- Provides shape to body
- Protects vital body organs like brain, lungs, etc.

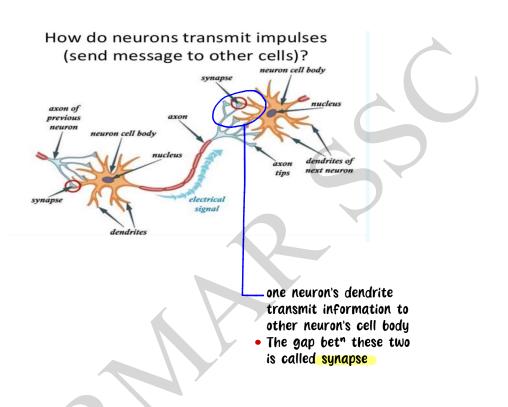


d) Fluid Connective Tissue

Connects different part of the body Maintains a continuity



- Colourless fluid
- RBCs and Blood proteins are absent



d) Nervous Tissue

• Glial cells: far more numerous than neurons and unlike neurons, they are capable of mitosis

• Camel hump is made of: Adipose tissue