

METALS AND NON-METALS

Difference between Metals and Non-Metals

Property	Metals	Non-metals	
Physical State	Generally exists in solid state Except : Hg (liquid at room	They exists in solid and gaseous state	
	temp.) Ga: 30°C Cs: 28.5°C	Except: Br (liquid)	
Lustre	They have shining surface Except: lead (dull appearance)	They lack luster Except: lodine, diamond, and graphite	
Hardness	Are hard in nature Except: Na, K, Cs, Hg, Ga, Zn (soft metals, can be cut by knife)	Are soft in nature Except: Diamond is the hardest natural substance known	
Ductility	Beaten into sheets Au and Ag are more malleable Except: Hg, Na, K, Zn	They are not malleable	
Malleability	Drawn into wire, Au and <u>Ag</u> more ductile Except: Hg, Na, K, Zn Metal wit conductiv	They lack ductility h highest ity	
Melting and Boiling point	They have high melting and boiling point High BP = 5650°C (Rhenium – Re) Except: Hg	Low melting and boiling point Except: Diamond, Graphite, Si, C, B	

Density	They have high density	Have low density
	Except: Na and K (they float	Except: Diamond
	on water)	
	Highest density: Osmium	
		Are brittle
Brittleness	They are hard	Except: gases
	Except: Zn	
		Do not form
Alloy-formation	Stainless steel is alloy of Ni,	Except: Carbon is allowed
-	Cr, and Fe	with iron to form steel
	German Silver: Cu, Zn and Ni	
Thermal and	Are good conductor of heat	Bad conductor of heat and
electrical	Except: Lead and Hg	electricity
conductivity		Except: graphite which is a
y		good conductor of electricity
Sonority	They are sonorous	Are not sonorous
Types of ion	Cation	Anion
Nature of oxides	Basic in nature	Acidic in nature

Chemical Properties of Metals


• Reaction of metal with oxygen (burning in air or formation of oxides)

Almost all metals combine with oxygen (or air) to metal oxides

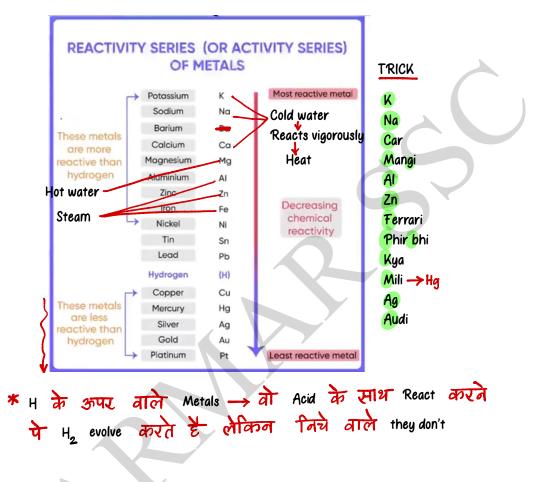
Metal + Oxygen ------> Metal Oxide

e.g. (i) $4AI(s) + 3O_2(g) \longrightarrow 2AI_2O_3(s) + HCI \longrightarrow AICI_3 + H_2O_3(s)$

Generally, metal oxides are basic in nature

Reaction of metal with oxygen Exception:

 Some metal oxides such as Aluminium oxide, Zinc oxide show both acidic and basic behaviour, such metal oxides which react with both acids as well as bases to produce salt and water are called amphoteric oxides



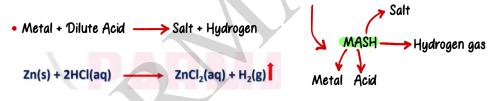
Metal oxide + Acid-Salt + water
Non-metal oxide + Base-Salt + water

Order of reactivity of metal with oxygen:

- 1. Different metals react with oxygen at different rates
- 2. Sodium and potassium react vigorously with oxygen catch fire if left open that's why kept in kerosene oil
- 3. At room temp. the surface of magnesium and aluminium are covered with thin layer of oxide which prevents the metal from further oxidation. They burn in air only by heating
- 4. Zinc burns only on strong heating
- 5. Iron burns in the form of fillings
- 6. Gold and Silver do not react with oxygen even at high temp.

Reaction of metal with water

- Metal react with water and produce a metal oxides and hydrogen gas. Metal oxides that are soluble in water dissolves in it further to form metal hydroxide
- All the metals do not react with water as the metals placed lower in the reactivity series are less reactive towards water
- Metal + Water ------> Metal Hydroxide



• Gold (Au) -> dissolves in Aqua Regia

 $\begin{array}{c} 2K(s) + 2H_2O(l) & Cold \\ 2Na(s) + 2H_2O(l) & Cold \\ 2Na(s) + 2H_2O(l) & Cold \\ 2NaOH(aq) + H_2(g) + Heat \\ Ca(s) + 2H_2O(l) & Ca(OH)_2(aq) + H_2(g) \\ \hline 2Al(s) + 3H_2O(l) & Steam \\ \hline 3Fe(s) + 4H_2O(l) & Steam \\ \hline Fe_3O_4(s) + 4H_2(g) \end{array}$

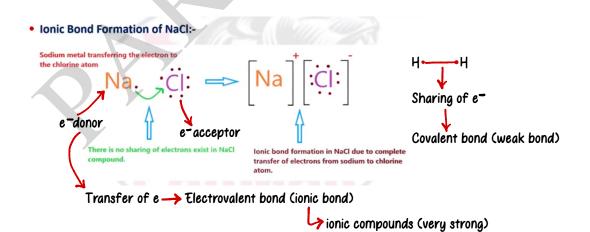
Reaction of Metal with acid:

• Except few less reactive metals (such as Cu, Hg, Ag, Au, Pt, etc.), all metals react with dilute sulphuric acid and hydrochloric acid to produce salt and hydrogen gas

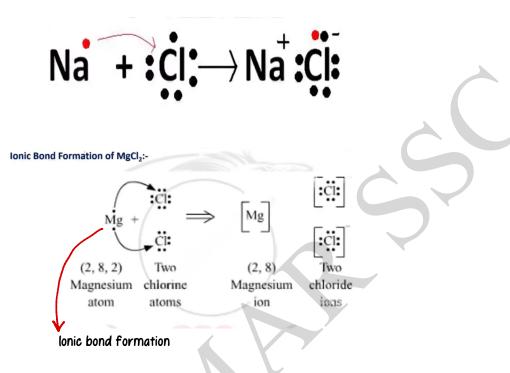
- Hydrogen gas is not evolved when a metal reacts with nitric acid. This is due to strong
 oxidising nature of nitric acid. It oxidises the H, produce to water and itself get reduced to
 any of the nitrogen oxide (NO, NO₂, N₂O). But magnesium (Mg) and manganese (Mn) react with
 dilute HNO₃ to evolve H₂ gas
- Metal + HNO₃ Salt + NO₂ /N₂O + H₂O
- Exceptional case (Only for Mn and Mg)
- Metal (Mn/Mg) + HNO₃ -----> Salt + H₂

Reaction of metals with solutions of other metal salt

- Metal, + Metal, Salt
 Metal, Salt + Metal,
- Cu(s) + 2AgNO₃ (aq) \longrightarrow Cu(NO₃)₂(aq) + 2Ag(s)
- Metal₁ is more reactive
- Metal₂ is less reactive


Reaction with Oxygen:

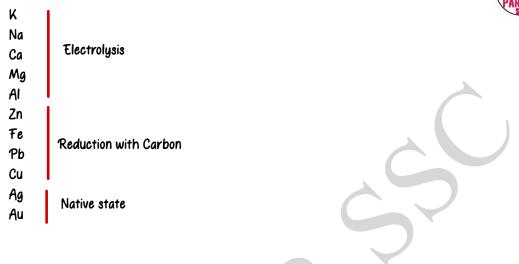
- Non-metals do not react with water, steam or dilute acid
- \bullet The reason is that they act as an electron acceptor and cannot H+ ions of acids to reduce them to hydrogen gas
- But on heating, readily form oxides or salts with conc. acids


 $S(s) + 2H_2SO_4$ (conc.) Δ $3SO_2(g) + 2H_2O(l)$

 $S(s) + 6HNO_3 (conc.) \longrightarrow H_2SO_4 (aq) + 6NO_2(g) + 2H_2O(aq)$

Reaction between Metals and Non-metals lonic Bond Formation:

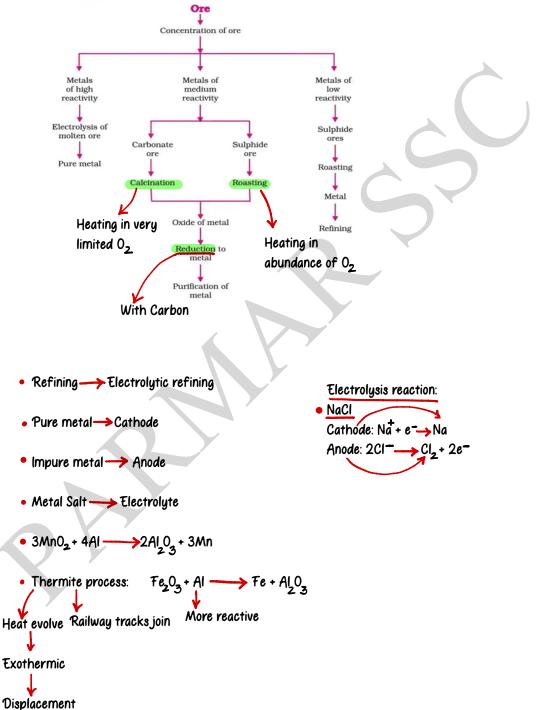
Properties of Ionic Compound:


1. <u>Physical nature</u>: lonic compounds are hard crystalline solids because of strong force of attraction between the positive and negative ions. These compounds are generally brittle and break into pieces when pressure is applied

2. <u>Melting and Boiling point</u>: these compounds have high melting and boiling points as large as the amount of energy is required to break strong inter-ionic attraction

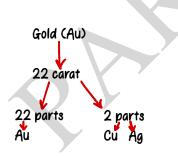
3. Solubility: these compounds are soluble in water (polar solvent) and insoluble in organic solvents (non-polar solvent) like kerosene, benzene, ether, petrol, etc.

4. Conduction of electricity: the conduction of electricity through a solution involves movement of charged particle. lonic and electrovalent compounds are good conductors of electricity, but they conduct electricity either in molten form or in their aqueous solution



Extraction of Metals from Ores

	Ţ,	Metal + Impurities •	→Ga
Metal	Mineral	Formula	
Gold	Native Gold	Au	
Silver	Argentite (in Galena)	Ag ₂ S	
Copper	Malachite	$Cu_2CO_3(OH)_2$	
	Azurite	$\mathrm{Cu}_3(\mathrm{CO}_3)_2(\mathrm{OH})_2$	
	Chalcopyrite	$CuFeS_2$	
Mercury	Cinnabar	HgS	
Iron	Hematite	Fe ₂ O ₃	
	Magnetite	Fe_3O_4 High % of	Fe
	Pyrite	FeS ₂	
Tin	Cassiterite	SnO_2	
Lead	Galena	PbS	


Corrosion

- 1. Iron-Brown (Iron Oxide)
- 3. Silver ----- Black (Silver Sulfide)

Alloying

Alloy: homogenous mixture/solution of two or more metals/non-metals

Alloy	Composition
Steel	C + Fe + Ni
Stainless Steel	Cr + Fe + Ni
Solder	Pb + Sn
Bronze	90% Cu + Sn-10%
Brass	30% Cu + Zn
Gun Metal	Cu + Zn + Sn 70%
German Silver	Cu + Zn + Ni
Nichrome	Ni + Cr + Fe
Magnalium	Mg + Al
Duralumin	Al + Mn + Cu
Constantan	Cu + Ni
Rolled gold	Cu + Al

•Alloys have low conductivity compared to their respective metals

Galvanisation/Anodising

Zinc coating Aluminium layering done electrolytically done physically

- Purest form of Iron: Wrought iron
- Soft silvery metal, with low density that reacts vigorously with water and corrodes quickly in air and has atomic no 3: Lithium (white gold)
- Element used to make coils in water heaters: Nichrome
- Metal earlier called Wolframite and has the highest melting point: Tungsten (W)
- Element found in water and responsible for cancer: Arsenic
- NO3 (nitrate): Blue baby syndrome
- Gallium is used in LED semiconductor technology
- Silicon dioxide: it has high melting point
- Potash alum + KAI(SQ₄).12H₂0 → Metal sulphate, composed of potassium, aluminium, and sulphate ions in the ratio 1:1:2 → Plays an important role as a flame retardant, a mordant and as astringent
- The process in which a carbonate ore is heated strongly in the absence of air to convert it into metal oxide is called Calcination
- Fool's gold: Pyrite
- Boron is an example of metalloid
- Gypsum: CaSo4.2H,0

Celestine: SrSO₄. 2H₂O

•Epsom salt: MgSg .7H_0

- Constantan is an alloy of copper and nickel
- •Talonite ore is a combination of cobalt and chromium
- •Amalgam: Hg