

SSC GK

SSC GK BATCH 2.0 Chemsin

Carbon & It's Compounds

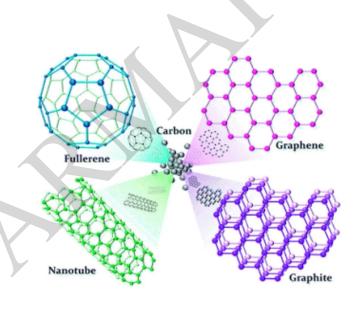
Lecture: - 6

For Notes Join Telegram:

OR Scan

Click on the icon.

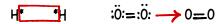
For Lectures Subscribe Our Parmar SSC Youtube Channe


OR Scan

Click on the icon.

CARBON AND IT'S COMPOUND

Carbon



• Atmosphere: 0.036%
• Earth crust: 0.02%
• Atomic no: 6 -> 2, 4

• Alkali metals: Li, Na, K

• Halogen: 7 -1 Covalent Bond

Bonding in Carbon: The Covalent Bond

•Strength: weak Nitrogen: :N:=:N:

·Low Melting Point/Boiling Point

Allotropes of Carbon

Graphite: 1C -> 3C -> Slippery

- Diamond: 1C -> 4C -> Hardest substance known
- Buckmister Fullerene: C 60
 Arranged in football shape

Versatile Nature of Carbon

• Catenation: unique ability to form bonds with other carbon atom→Large molecule

Due to small size of C atom

C-C-C-C

- ane: C-C single bond Saturated compounds
- •ene: C=C
- . yne: C≡C /

Unsaturated compounds

• Alkane: C_nH_{2n+2}

• Hydrocarbon → C-H

Alkene: C_nH_{2n}
Alkyne: C_nH_{2n-2}

Saturated and Unsaturated Carbon Compounds

H
H
C=C
H
H

$$C=C$$
H

 $C=C$
H

Nomenclature

- 1C: Meth
- 2C: Eth
- 3C: Prop4C: But
- 40: But
- 5C: Pent6C: Hexa
- 7C: Hepta
- 8C: Octa

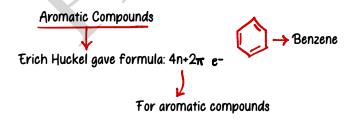
Root: CH-CH-CH

continuation of Parent chain

$$C \xrightarrow{C-C} C \xrightarrow{cyclical} \xrightarrow{C_n H_{2n}} C$$

Isomers: compounds with identical molecular formula but different structural formula

Hetero atom	Class of compounds	Formula of functional group
Cl/Br	Halo- (Chloro/bromo) alkane	—Cl, —Br (substitutes for hydrogen atom)
Oxygen	1. Alcohol	—ОН
	2. Aldehyde	-c H
	3. Ketone	O -C-
	4. Carboxylic acid	O -C-OH


Nomenclature of Carbon Compounds

Class of compounds	Functional group structure	IUPAC group prefix	IUPAC group suffix	Example
Alkanes	-		-ane	Butane, CH ₃ (CH ₂) ₂ CH ₃
Alkenes	>C=C<	7-1	-ene	But-1-ene, CH ₂ =CHCH ₂ CH ₃
Alkynes	-C=C-	-	-yne	But-1-yne, CH≡CCH ₂ CH ₃
Arenes	-	-	-	Benzene,
Halides	-X (X=F,Cl,Br,I)	halo-	-	1-Bromobutane. CH ₃ (CH ₂) ₂ CH ₂ Br
Alcohols	-ОН	hydroxy-	-ol	Butan-2-ol, CH ₃ CH ₂ CHOHCH ₃
Aldehydes	-СНО	formyl, or oxo	-al	Butanal, CH ₃ (CH ₂) ₂ CHO
Ketones	>C=O	oxo-	-one	Butan-2-one, CH ₃ CH ₂ COCH ₃
Nitriles	-C=N	cyano	nitrile	Pentanenitrile. CH ₃ CH ₂ CH ₂ CH ₂ CN
Ethers	-R-O-R-	alkoxy-	-	Ethoxyethane, CH ₃ CH ₂ OCH ₂ CH ₃
Carboxylic acids	-СООН	carboxy	-oic acid	Butanoic acid, CH ₃ (CH ₂) ₂ CO ₂ H
ione.		-	-bate	Sodium butanests, CH3(CH2)2CO2 No
Esters	-COOR	alkoxycarbonyl	-oate	Methyl propanoate, CH ₃ CH ₂ COOCH ₃

- CH4: Methane
- CH CI: Chloro Methane
- · CH, CH, CI: Chloroethane
- CH_OH: Methanol
- · CH_CH_OH: Ethanol
- CH_COOH: Ethanoic acid
- HCOOH: Methanoic acid

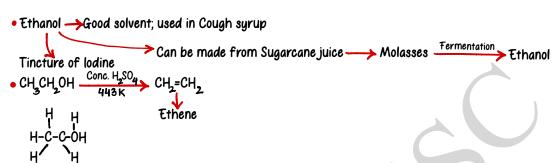
- Primary: CHzCHzOH, CHzCHzCHzOH
- Secondary: CH₂CH·CH-CH₂CH 2 1 0H
- CH, - Tertiary: CH; CH; CH; CH; CH; CH; OH

Chemical Properties of Carbon Compounds

1. Combustion:

$$CH_2CH_2OH + O_2 \longrightarrow CO_2 + H_2O + Heat and light$$

Exothermic


- Saturated: burns with clear blue flame
- Unsaturated: burns with yellow sooty flame
- LPG: Propane + Butane
- CNG: Methane

- > Hydrogenation 3. Addition Reaction
- Unsaturated Hydrocarbon: H₂

- 4. Substitution Reaction
- Saturated Hydrocarbons —are unreactive and inert

Some important Carbon Compounds- Ethanol and Ethanoic Acid

Properties of Ethanol

Reactions of Ethanoic Acid

1. Esterification Reaction

- 2. Reaction with a base
- $CH_{3}COOC_{2}H_{5}$ + NaOH \longrightarrow $CH_{3}COONa$ + $C_{2}H_{5}OH$

- Detergent: Sodium salt of long chain Sulphonic acid
 - 3. Reaction with Carbonates and Hydrocarbonates

- Alkylebenzene widely used in production of phenol: Cumene
- Strong reducing agent used to reduce aldehydes, ketones, esters, carboxylic acid chlorides, carboxylic acids and even carboxylate salts to alcohols: Lithium aluminium hydride (LiAIH₁)
- Two double carbon- carbon bonds are known as dienes
- Isopentane also called 2-methylbutane and is branched structure with formula $C_{\mathbf{S}}H_{12}$

Sedimentation not used to purify organic compounds

- Paradichlorobenzene is used as fumigant insecticide to contra cloth moths and chemical formula is: $C_kH_kCl_2$
- Root is used to represent the no. of carbon atoms in the parent chain
- Examples of monosaccharides: Fructose (fruit sugar) and Glucose

Simplest form of Sugar

- Cereals: Maltose
- Largest compound of natural gas: Methane (seen in Paddy field, they are Marsh gas)

Also seen in where there are Termite

• Butane gas:
$$C_1H_{10}$$

Alkane: C_0H_{2n+2}

- Three carbon molecules broken down from six-carbon molecules of glucose during the first step in the process of nutrition in all organisms is called: Pyruvate Glucose Cytoplasm Puruvate
- Dicholorodifluromethane: CCl2F2